Rapport d'enquête aéronautique A98H0003

1.14.13  Risque d'incendie potentiel accru en raison de systèmes de bord non résistants au feu

En vertu de la réglementation en vigueur au moment de la certification du MD-11, il n'existait aucune exigence visant à déterminer si la défaillance d'un matériau donné, utilisé dans un des systèmes de bord, pouvait aggraver un incendie en cours. La défaillance prématurée de certains systèmes, comme les systèmes d'alimentation en oxygène, les systèmes hydrauliques ou les systèmes de conditionnement d'air, pourraient aggraver un incendie en vol.

À l'origine, les conduites de distribution d'oxygène de l'équipage du MD-11 étaient construites en tubes d'aluminium. Durant la construction de l'avion, on avait découvert que les conduites en aluminium pouvaient être endommagées durant la manutention; par conséquent, les conduites, ainsi que la plus grande partie des raccords, avaient été remplacées par des pièces en acier résistant à la corrosion. Bien que McDonnell Douglas ait remplacé les tubes en aluminium et la plus grande partie des raccords par des pièces en acier résistant à la corrosion, l'avionneur a continué d'utiliser des embouts en aluminium (p. ex. AN 929-6) sur les conduites inutilisées mais pressurisées. Un tel embout en aluminium avait été utilisé sur la conduite en acier inoxydable de 8 cm (3 po) de longueur qui partait de la conduite principale d'alimentation en oxygène, située au-dessus du plafond du poste de pilotage, à la référence 374. Cet embout était installé de telle façon qu'il dépassait du matelas d'isolation. Durant l'incendie, cette zone a été exposée aux flammes et à la chaleur.

Le Laboratoire technique du BST a effectué des essais au four sur un ensemble représentatif conduite en acier résistant à la corrosion /embout en aluminium afin d'observer les effets des températures élevées sur ces deux métaux différents. La plage normale de fonctionnement du circuit d'alimentation en oxygène de l'équipage du MD-11 se situe entre 62 et 85 lb/po2. Durant l'essai, la conduite a été pressurisée à 70 lb/po2 et on a chauffé uniformément l'ensemble. Au cours de certains essais, des fuites sont apparues à 427 °C (801 °F); à des températures supérieures à 427 °C (801 °F), l'embout en aluminium se desserrait.

Des essais ont été réalisés à des températures comprises entre 566 °C (1 051 °F) et 593 °C (1 099 °F). Après une exposition d'environ 10 minutes et demie, l'embout en aluminium se brisait généralement en deux morceaux, laissant l'extrémité de la conduite complètement ouverte. Dans cette plage de température, des fuites se produiraient avant la rupture.

Des essais ont également été menés à des températures de 649, 704 et 760 °C (1 200, 1 300 et 1 400 °F). Les embouts en aluminium se sont brisés après environ 5 3/4 minutes, 4 minutes et 3 1/4 minutes d'exposition, respectivement. L'analyse métallurgique des faciès de rupture a permis de constater que ces températures avaient entraîné une croissance du grain et que les défaillances s'étaient produites sous la forme de ruptures intergranulaires le long des joints de grain fragilisés. Lors de ces essais, aucune fuite mesurable ne s'est produite avant la rupture, la croissance accélérée du grain ayant causé la déformation et la rupture de l'embout avant l'apparition d'une fuite.

À des fins de comparaison, des essais similaires ont été menés au moyen d'embouts en acier résistant à la corrosion à la place des embouts en aluminium. Avec les embouts en acier résistant à la corrosion, il n'y a pas eu desserrage et il n'y a eu ni fuites ni rupture de l'embout, même lorsque l'ensemble a été exposé à une température de 760 °C (1 400 °F) durant 20 minutes.

Les essais étaient jugés simples en ce qu'une température uniforme avait été appliquée. Sur l'avion en question, les effets de la chaleur n'ont probablement pas été uniformes. Par exemple, puisque l'embout dépassait du matelas isolant, contrairement à la conduite, l'embout doit avoir été chauffé en premier et à une plus forte intensité que la conduite. En outre, un gradient de température aurait déjà existé entre la conduite d'alimentation, placée contre le revêtement extérieur froid du fuselage, et l'embout, exposé à l'intérieur plus chaud.

Si cet embout devait se briser ou présenter des fuites durant un incendie, de l'oxygène pur se mêlerait à l'incendie et en augmenterait considérablement l'intensité. En outre, une défaillance de l'embout entraînerait une perte de pression dans la conduite, interrompant ainsi le flux d'oxygène vers les masques à oxygène des pilotes.

Dans la zone endommagée par l'incendie, des embouts en élastomère avaient été utilisés sur les gaines de conditionnement d'air. Les essais de tenue au feu ont démontré que les embouts en élastomère pouvaient être facilement enflammés par une source d'inflammation faible (DIT1-97 (vidéoclip)). Une fois enflammés, les embouts étaient détruits par un front de flamme autopropagé. Des tuyaux souples et des raccords en fibre de verre avaient aussi été utilisés dans le système de conditionnement d'air dans tout l'avion. Ce matériau est thermotolérant; néanmoins, lorsqu'il a été testé dans un calorimètre à cône, le matériau s'est enflammé au bout de deux minutes et demie après avoir été exposé à un flux de chaleur de 25 kilowatts par mètre carré, ce qui équivaut à une température de 591 °C (1 095 °F). Une rupture du système de conditionnement d'air dans la zone d'incendie y aurait introduit un flux d'air important qui aurait accru l'intensité de l'incendie. Les dommages causés par la chaleur à la structure de l'avion sur la structure de reconstruction indiquent que ces températures ont probablement été atteintes ou dépassées à certains endroits où étaient installés des tuyaux souples en fibre de verre.

La FAR 25.1309 stipule que tout système doit faire l'objet d'une analyse de sécurité dans le cadre de son processus de certification. Bien que ce soit une pratique bien établie dans l'industrie aéronautique d'examiner les conséquences de la défaillance d'un système durant le processus de certification, l'analyse de sécurité d'un système ne comprend généralement pas l'évaluation des conséquences de la défaillance du système en raison d'un incendie en cours.

Précédent | Suivant